Apakah kalian pernah melihat gerakan pada bandul atau per? Kedua gerakan yang kalian amati tersebut tergolong ke dalam gerak harmonik sederhana. Ini adalah gerakan bolak-balik di sekitar titik keseimbangannya. Kalau kalian perhatikan, bandul memiliki titik kesetimbangan di tengah, karena walaupun kecepatannya menurun, bandul akan tetap bergerak di sekitar titik kesetimbangan tersebut. Gerak harmonik sederhana memiliki amplitudo simpangan maksimum dan frekuensi yang tetap. Gerak ini bersifat periodik. Setiap gerakannya akan terjadi secara berulang dan teratur dalam selang waktu yang sama. Dalam gerak harmonik sederhana, resultan gayanya memiliki arah yang selalu sama, yaitu menuju titik kesetimbangan. Gaya ini disebut dengan gaya pemulih. Besar gaya pemulih berbanding lurus dengan posisi benda terhadap titik kesetimbangan. Beberapa karakteristik gerak ini diantaranya adalah dapat dinyatakan dengan grafik posisi partikel sebagai fungsi waktu berupa sinus atau kosinus. Gerak ini juga dapat ditinjau dari persamaan simpangan, persamaan kecepatan, persamaan kecepatan, dan persamaan energi gerak yang dimaksud. Baca juga Besaran-Besaran dalam Konsep Gerak Lurus Berdasarkan karakteristik tersebut, gerak harmonik sederhana memiliki simpangan, kecepatan, percepatan, dan energi. Simpangan Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Secara umum, persamaan simpangan dalam gerak ini adalah sebagai berikut. y = simpangan getaran m = kecepatan sudut rad/s T = periode s f = frekuensi Hz t = waktu tempuh s A = amplitudo/simpangan maksimum m Kecepatan Kecepatan merupakan turunan pertama dari posisi. Pada gerak harmonik sederhana, kecepatan diperoleh dari turunan pertama persamaan simpangan. Persamaan kecepatan dapat dijabarkan sebagai berikut. Percepatan Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. Persamaan percepatan dapat diperoleh sebagai berikut. Simpangan maksimum memiliki nilai yang sama dengan amplitudo y = A, sehingga percepatan maksimumnya adalah am= – Aw Energi Persamaan energi pada gerak harmonik sederhana meliputi energi kinetik, energi potensial, dan energi mekanik. Energi kinetik benda dapat dirumuskan sebagai berikut. Energi potensial benda dapat dirumuskan sebagai berikut. Sementara itu, energi mekanik adalah penjumlahan dari energi kinetik dan energi potensial. k = nilai ketetapan N/m = kecepatan sudut rad/s A = amplitudo m t = waktu tempuh s Jumlah energi potensial dan energi kinetik benda yang bergerak harmonik sederhana selalu bernilai tetap. Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik.Jikay dalam meter dan t dalam detik, tentukanlah: 1) persamaan kecepatan dan percepatan getar, 2) kecepatan getar maksimum dan percepatan getar maksimum, 3) Kecepatan getar dan percepatan getar saat t bernilai 1 detik, dan 4) sudut fase saat kecepatan getar sama dengan kecepatan getar maksimum! Jawab: Besaran yang diketahui. Baca Juga
B 5/π Hz C. 5 Hz D. 10π Hz E. 10/π Hz jawab: pembahasan: rumus frekuensi pegas k = 𝜔 2.m 400 = (2πf) 2. 4 100 = (2πf) 2 10 = 2πf 5 = πf f = 5 / π 7. Sebuah partikel bergerak harmonic dengan periode 0,1 s dan amplitude 1 cm. Pada saat berada jarak patikel 0,6 cm dari titik kesetimbangan, Kelajuan partikel tesebut adalah
Gerak Harmonik Sederhana – Gerakan harmonik ini yakni mempunyai suatu amplitudo konstan deviasi maksimum dan frekuensi. Pergerakan itu periodik. Setiap gerakan diulangi dan dilakukan terus menerus pada interval waktu sama. Dengan gerakan harmonik sederhana, gaya yang dihasilkan persis arah yang sama dengan yang mendekati arah keseimbangan. Gaya ini disebut gaya pemulihan. Gaya pemulih berbanding lurus dengan posisi objek sehubungan dengan keseimbangan. Apa itu Gerak Harmonik Sederhana ?Karakteristik Gerakana. Simpanganb. Kecepatanc. Energid. PercepatanSyarat Getaran HarmonikPeriode dan Frekuensi Getaran Harmonika. Periode dan Frekuensi Bandul Sederhanab. Periode dan Frekuensi Sistem Pegas Pengertian Gerak Harmonik Sederhana merupakan bahwa objek berubah secara konstan pada titik kesetimbangan, jumlah getaran per detik harus konstan atau sama. Gerakan harmonik ini yakni dapat disebabkan oleh benda yang memiliki kekuatan mereka dapat mendorong atau menarik dan memiliki kekuatan penyembuhan, misalnya dalam memperluas dan memecah pegas dari titik setimbang karena kekuatan. Jika pada musim semi getaran, gaya awal dihubungkan dengan hukum kait. Dalam konsep gerakan harmonik ada beberapa besaran fisik yang diperoleh dari objek berosilasi, yakni Simpangan y = Jarak benda dalam dari kesetimbanganPeriode T = Banyaknya dalam waktu yang satu getaranFrekuensi f = Getaran setiap waktuAmplitude A = Simpangan yang maksimum Dengan materi ini adanya berbagai kondisi sebagai terjadinya suatu fenomena yang disebut sebagai gerakan harmonik sederhana, yakni Getaran mempercepat atau memaksa aksi menuju untuk mengembalikan inersia yang dapat menyebabkan overshoot melewati posisi dalam adanya suatu keseimbangan. Karakteristik Gerakan Berdasarkan karakteristik adanya berbagai karakteristik dalam gerakan tersebut, yakni a. Simpangan Simpangan dalam getaran harmonik ringan bisa dilihat sebagai prediksi partikel bergerak dalam bentuk lingkaran dengan diameter lingkaran. Secara umum, rumus untuk penyimpangan dalam gerakan adalah sebagai berikut. y = Simpangan getaran mT = Periode s = Kecepatan sudut rad/sf = Frekuensi HzA = Amplitudo/simpangan maksimum m b. Kecepatan Kecepatan adalah turunan dari posisi pertama. Untuk gerakan harmonik sederhana, kecepatan yang dapat diturunkan dari turunan pertama dari rumus deviasi. c. Energi Persamaan energi dalam gerakan harmonik sederhana termasuk energi kinetik, energi potensial dan energi mekanik. Energi kinetik dapat diringkas sebagai berikut. k = Nilai ketetapan N/mA = Amplitudo m = Kecepatan sudut rad/st = Waktu tempuh s Jumlah energi potensial dan energi kinetik dari objek bergerak dalam harmoni sederhana tetap merupakan nilai konstan. d. Percepatan Percepatan terhadap suatu objek kopling harmonik sederhana dapat diperoleh dari turunan pertama dari rumus kecepatan atau turunan kedua dari persamaan deviasi. Persamaan percepatan dapat diperoleh sebagai berikut. Deviasi maksimum memiliki nilai yang sama dengan amplitudo y = A, oleh karena itu percepatan maksimumnya ialah am=- Aw Syarat Getaran Harmonik Kebutuhan akan gerakan bicara adalah getaran harmonis, termasuk Gerakan periodik mundur.Gerakannya selalu melewati posisi atau memaksakan efek pada objek yang sebanding dengan posisi atau dalam penyimpangan akselerasi atau gaya yang bekerja pada suatu benda menciptakan keseimbangan. Periode dan Frekuensi Getaran Harmonik Adapun dengan berbagai periode dan frekuensi dalam getaran ini, diantaranya ialah sebagai berikut a. Periode dan Frekuensi Bandul Sederhana Sebuah pendulum sederhana terdiri dari massa yang digantungkan di ujung tali ringan massa terabaikan dari 1. Ketika beban ditarik ke satu sisi dan dilepaskan, beban memecah titik kesetimbangan ke sisi lainnya. Jika amplitudo ayunan rendah, bandul menciptakan getaran harmonis. Frekuensi dan frekuensi osilasi di pendulum sama dengan di musim semi. Artinya, waktu dan frekuensi dapat dihitung dengan membandingkan kekuatan pemulihan dan centripetal. b. Periode dan Frekuensi Sistem Pegas Padahal, gerakan harmonik adalah gerakan melingkar tidak beraturan di salah satu gelombang utama. Oleh karena itu, waktu dan frekuensi dalam pegas dapat dihitung dengan menambahkan gaya pemulihan F = -kX dan gaya sentripetal F = -4π2 mf2X. Durasi dan frekuensi sistem beban pegas hanya bergantung dalam suatu massa dan konstanta pegas. Baca Juga Demikianlah pembahasan kali ini, yang telah kami sampaikan secara lengkap dan jelas yakni mengenai Gerak Harmonik Sederhana. Semoga ulasan ini, dapat berguna dan bermanfaat bagi Anda semuanya.Gerakharmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan.. Jenis, Contoh, dan Besaran Fisika pada Gerak Harmonik Sederhana Jenis Gerak Harmonik Sederhana. Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu: Gerak Harmonik Sederhana (GHS) Linier, misalnya penghisap dalam
MAKALAH GETARAN HARMONIK DAN KETERKAITANNYA DALAM BIDANG BIOLOGI DOSEN PENGAMPU Dr. Parno M. Si Disusun oleh Karima Nisa Aabidah 210342606031 PROGRAM STUDI S1 BIOLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI MALANG 2021/2022 Kata Pengantar Puji syukur ke hadirat Tuhan Yang Maha Esa. Atas rahmat dan hidayah-Nya, penulis dapat menyelesaikan tugas makalah yang berjudul “Getaran Harmonik dan Keterkaitannya dalam Bidang Biologi” dengan tepat waktu. Makalah disusun untuk memenuhi tugas Mata Kuliah Fisika untuk Biologi. Selain itu, makalah ini bertujuan menambah wawasan tentang Getaran Harmonik serta penerapannya dalam biologi bagi para pembaca dan juga bagi penulis. Penulis mengucapkan terima kasih kepada Bapak Dr. Parno M. Si,selaku dosen Mata Kuliah Fisika untuk Biologi. Ucapan terima kasih juga disampaikan kepada semua pihak yang telah membantu dan berpartisipasi dalam penyelesaian makalah ini. Penulis menyadari makalah ini masih dari sempurna. Oleh sebab itu, saran dan kritik yang membangun diharapkan demi kesempurnaan makalah ini. Semoga makalah ini dapat bermanfaat bagi semua pihak yang membutuhkannya. Tulungagung, 09 November 2021 Karima Nisa Aabidah DAFTAR ISI KATA PENGANTAR DAFTAR ISI PENDAHULUANLatar Belakang MasalahRumusan MasalahTujuan PenulisanManfaat PenulisanPEMBAHASANPengertian dan karakteristik dari Getaran HarmonikFenomena Getaran Harmonik dalam Bidang BiologiPenerapan teknologi terkait Getaran HarmonikContoh soal yang berkaitan tentang Getaran HarmonikPermasalahan konstekstual terkait Getaran Harmonik pada Bidang Biologi beserta Solusi Penyelesaian dan Desain MiniaturnyaArtikel terkait dengan Getaran HarmonikPENUTUPKesimpulanSaran DAFTAR PUSTAKA BAB I PENDAHULUAN Latar Belakang Banyak orang yang sampai saat ini masih beranggapan bahwa Fisika adalah ilmu yang mempelajari tentang rumus dan lingkungan alam tanpa ada penerapannya. Padahal tanpa mereka sadari banyak sekali peristiwa-pertiwa yang menggunakan konsep dari ilmu fisika. Kehidupan sehari-hari kita tidak dapat terlepas dari proses fisis. Dimulai dari hal-hal yang diri kita lakukan terlibat dalam penerapan sederhana dari ilmu fisika, seperti saat kita berjalan, mengangkat suatu benda, gerakan-gerakan kecil yang kita lakukan dan juga saat kita sedang bermain. Salah satu permainan yang menerapkan ilmu fisika adalah ayunan. Ayunan menggunakan konsep dari getaran dan gelombang. Getaran adalah suatu gerakan bolak-bailk yang terjadi atau berada di titik kesetimbangan. Getaran yang dimaksudkan dalam ayunan adalah getaran harmonik. Harmonik sendiri memiliki arti bentuk atau pola yang selalu berulang diwaktu tertentu. Rumusan Masalah Apa yang dimaksud dengan Getaran Harmonik?Apa contoh fenomena penerapan getaran harmonik dalam biologi?Apa contoh teknologi yang menerapkan prinsip getaran harmonik?Bagaimana contoh soal dari getaran harmonik dan pembahasannya?Bagaimana solusi dan desain miniatur teknologi untuk menyelesaikan permasalahan konstektual dalam bidang biologi?Apa contoh artikel yang sesuai dengan getaran harmonik? Tujuan Penulisan Untuk mengetahui pengertian dari getaran mengetahui contoh fenomena penerapan getaran harmonik dalam bidang mengetahui contoh teknologi yang menerapkan prinsip getaran mengetahui contoh soal tentang getaran harmonik berserta mengetahui permasalahan konstektual tentang getaran harmonik dalam bidang mengetahui solusi dan desai miniatur yang digunakan untuk menyelesaikan permasalahan konstektual tentang getaran harmonik dalam bidang mengetahui contoh artikel yang sesuai dengan getaran harmonik. Manfaat Penulisan Bagi Penulis Menambah wawasan dan ilmu pengetahuan serta menambah pengalaman dalam menulis suatu makalah. Selain itu, menjadi wadah bagi mahasiswa untuk mengaplikasikan ilmu pengetahuan yang diperoleh. 2. Bagi Pembaca Hasil dari proposal penelitian ini dapat dimanfaatkan sebagai acuan dan literatur dalam melakukan penulisan yang sejenis. BAB II PEMBAHASAN Pengertian Getaran harmonik Setiap gerak berulang yang terjadi dalam selang waktu yang sama disebut gerak periodik. Lantaran gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik atau harmonis. Jika suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi atau harmonik merupakan sebuah gerak pada benda yang mana grafik letak partikel berupa fungsi waktu yang berbentuk sinus yang bisa dinyatakan dalam bentuk sinus ataupun dalam bentuk kosinus. Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Getaran Harmonis memiliki beberapa syarat, yaitu Gerakannya periodik atau selalu melewati titik atau gaya yang ada pada benda sebanding dengan simpangan percepatan atau gaya benda mengarah ke titik keseimbangan. Karakteristik pada gerak harmonis Simpangan Simpangan adalah jarak benda dari titik kesetimbangan. Kecepatan Kecepatan gerak harmonik dapat dirumuskan sebagai berikut v = A . cos . t Dimana kecepatan maksimum benda dapat diperoleh jika nilai t = 0. Sehingga dapat disimpulkan bahwa Vmaks = t Percepatan Dalam getaran harmonik, percepatan adalah perubahan kecepatan terhadap satuan waktu dengan arah percepatan yang menuju titik kesetimbangan. Rumus percepatan dapat dituliskan dengan persamaan Percepatan bernilai maksimum pada 90°. Sehingga bisa menggunakan persamaan, Gaya pemulih Gaya pemulih adalah gaya yang dimiliki oleh benda elastis sehingga dapat kembali kebentuk semula. Persamaan F = -k. x Dimana F adalah gaya pemulih, k adalah konstanta pegas dan x adalah pergeseran ujung pegas dari posisi kesetimbangan. Fenomena Getaran Harmonik dalam Biologi Sistem gerak pada manusia merupakan satu kesatuan organ yang bekerja sama untuk mendukung tubuh manusia melakukan suatu gerakan. Sistem gerak tubuh manusia disebut juga dengan sistem muskuloskeletal, yang terdiri dari otot, sendi, rangka dan organ lain seperti tulang rawan dan ligamen. Organ-organ yang mendukung gerak tubuh manusia akan bekerja sama sesuai dengan fungsinya. Sistem gerak sendiri terdiri dari dua jenis alat gerak. Alat gerak aktif yang terdiri dari otot-otot dan alat gerak pasif yang terdiri dari tulang. Otot disebut alat gerak aktif karena memiliki kemampuan untuk berkontraksi, melakukan relaksasi hingga menggerakkan sesuatu. Model fisika dari gerakan yang terjadi pada tubuh manusia yakni pada saat berdiri. tubuh manusia dapat dimodelkan sebagai bandul fisis yang berayun ke arah depan-belakang, maupun pada arah samping kiri-kanan, dengan poros ayunannya terletak pada sendi ankle. Model osilasi bebas dari titik berat tubuh ternyata harus dikoreksi dengan adanya beberapa gaya pengontrol yang dilakukan oleh tendon Achilles menjadi osilasi paksa. Meninjau gerak pusat massa tubuh manusia saat berjalan atau melangkah dengan analisis kinematika menghasilkan model yang paling sesuai dengan kondisi geraknya yakni model gerak selaras atau gerak harmonik. Gard dalam Gatev et al memperlihatkan bahwa gerak pusat massa tubuh manusia saat melangkah mendekati kondisi osilasi harmonik baik pada arah mendatar maupun arah vertikal. Amplitudo gerak vertikal titik pusat massa akan bertambah besar seiring dengan bertambahnya laju gerak horizontal. Bila laju horizontal makin diperbesar, suatu saat akan terjadi perubahan status gerak dari berjalan menjadi berlari. Penerapan Teknologi di bidang biologi Modul elektrokardiograf adalah seperangkat set komponen untuk sensor denyut jantung. Dalam Modul tersebut terdapat sensor denyut jantung yang dipasangkan langsung pada tubuh manusia. EKG atau elektrokardiograf adalah alat ukur yang digunakan untuk mengukur/mendeteksi kondisi jantung dengan cara memantau irama dan frekuensi detak jantung. Untuk mengukur detak jantung, elektrode-elektrode dari elektrokardiograf ditempatkan ke dada pasien. Elektrode mendeteksi turun-naiknya arus listrik jantung dan mengirimnya ke elektrokardiograf, yang merekam perubahannya sebagai bentuk gelombang pada gulungan kertas yang bergerak. Rekaman hasil pengukuran ini disebut elektrokardiogram. Setiap kontraksi, otot jantung menghasilkan impuls kelistrikan dalam bentuk gelombang sinusoidal bentuk gelombang pada gerak harmonis yang ditampilkan pada layar elektrokardiograf. Gelombang-gelombang yang terbaca pada elektrokardiograf terdiri dari gelombang P, S, R aktivitas elektrik otot jantung yang sedang berkontraksi dan gelombang T aktivitas elektrik otot jantung yang sedang berelaksasi Contoh Soal terkait Getaran Harmonik Sebuah beban bermassa 250 gram digantung dengan sebuah pegas yang memiliki kontanta 100 N/m kemudian disimpangkan hingga terjadi getaran selaras. Tentukan periode getarannya! Jawaban Diketahui k = 100 N/m m = 250 g = 0,25 kg T = ….. Dari rumus periode getaran sistem pegas sehingga Permasalahan Konstektual, Penyelesaian dan Desain Miniatur dalam Biologi Proses mendengarkan tidak mungkin terjadi tanpa adanya penerapan gerakan harmonik sederhana. Proses mendengar dimulai dengan ditangkapnya gelombang suara yang ada di sekeliling kita melalui liang telinga. Di telinga, gelombang suara akan menyebabkan tulang pendengaran telinga tengah bergetar. Getaran tersebut kemudian merangsang sel-sel saraf di telinga bagian dalam untuk mengirimkannya ke otak. Proses transmisi suara dari telinga ke saraf agar otak bisa memprosesnya itulah yang membuat telinga bisa mendengar. Jika ada kerusakan atau gangguan pada bagian telinga tersebut, akan terjadi gangguan pendengaran. Salah satu gangguan pendengaran yang paling umum adalah tuli konduktif. Gangguan pendengaran konduktif adalah jenis tuli yang terjadi karena kerusakan pendengaran pada tulang atau jaringan ikat telinga yang mencegahnya menghantarkan suara dengan baik. Selain gangguan pada kedua bagian tersebut, ketulian juga dapat disebabkan oleh gangguan pada saraf telinga atau otak sensineural deafness. Orang dengan gangguan pendengaran konduktif sering mengalami kesulitan mendengar suara yang pelan. Sedangkan suara yang keras hanya dapat didengar dengan lembut. Pengobatan tuli konduktif akan disesuaikan dengan penyebab dan tingkat keparahan ketulian pasien. Salah satu cara yang dapat digunakan adalah dengan pemasangan alat bantu dengar atau Hearing Aid. Penggunaan alat bantu dengar ada yang ditempatkan di belakang atau pun di saluran telinga. Alat bantu dengar ini berkerja dengan cara mengubah getaran suara menjadi impuls listrik untuk diterima oleh saraf pendengaran, sehingga proses pendengaran bisa berlangsung dengan lebih lancar. Dengan adanya alat bantu dengar, penderita tuli konduktif akan lebih mudah mendengar suara-suara tertentu yang sebelumnya sulit didengar. Untuk membantu menentukan alat bantu dengan dan bagaimana pengaturan dan cara memakainya, pasien bisa berkonsultasi lebih lanjut ke dokter THT. Artikel yang terkait dengan Getaran Harmonik Contoh artikel yang berkaitan dengan penerapan Getaran Harmonik dalam bidang Biologi adalah artikel yang berjudul “Analisis Kinematika Gerak Pusat Massa Tubuh Manusia Saat Berjalan” yang disusun oleh Sardjito dan Nani Yuningsih. BAB III PENUTUP Kesimpulan Kehidupan kita tidak bisa terlepas dari pengaruh fisika dan ilmu-ilmu yang lainnya. Salah satunya adalah getaran harmonik. Hal tersebut dapat dibuktikan dengan fenomena saat kita sedang berjalan dimana gerak pusat massa tubuh manusia saat melangkah mendekati kondisi osilasi harmonik baik pada arah mendatar maupun arah vertikal. Selain itu, getaran harmonik juga dapat kita temukan dalam sistem pendengaran kita. Saran Dengan adanya makalah tentang Getaran Harmonik dan keterkaitannya dalam bidang Biologi ini, diharapkan pembaca memahami lebih lanjut mengenai getaran harmonik dan pemanfaatannya dalam biologi serta dapat memanfaatkannya dalam kehidupan sehari-hari. Daftar Pustaka Makalah Gerak Harmonik. 2015. Diakses pada 3 November 2021 dari, Rasthy. Getaran Harmonis Karakteristik, Ciri dan Contoh Soal. 2020. Diakses pada 3 November 2021 dari, Rian, Thoha. 7 Contoh Gerak Harmonik dalam Kehidupan Sehari-hari. 2021. Diakses pada 4 November 2021 dari, Anlene. Mengenal Sistem Gerak Aktif dan Sistem Gerak Pasif pada Manusia. 2021. Diakses pada 6 November 2021 dari, Sardjito & Yuningsih, N. Analisis Kinematika Gerak Pusat Massa Tubuh Manusia saat Berjalan. 2013. Diakses pada 6 November 2021 dari, Mulyadi, Dedy and Nuryadi, Satyo 2018 Sistem Deteksi Dini Kelainan Jantung Manusia Menggunakan Elektrokardiograf. Tugas Akhir thesis, University of Technology Yogyakarta.College Loan Consolidation Wednesday, December 17th, 2014 - Kelas XI Getaran harmonik atau getaran selaras memiliki ciri frekuensi getaran yang tetap. Pernahkan kita mengamati apa yang terjadi ketika senar gitar dipetik lalu dilepaskan? kita akan melihat suatu gerak bolak-balik melewati lintasan yang sama. Gerakan seperti ini dinamakan gerak periodik. Contoh lain gerak periodik adalah gerakan bumi mengelilingi matahari revolusi bumi, gerakan bulan mengelilingi bumi, gerakan benda yang tergantung pada sebuah pegas, dan gerakan sebuah bandul. Di antara gerak periodik ini ada gerakan yang dinamakan gerak Pengertian Getaran Harmonik Gerak harmonik merupakan gerak sebuah benda dimana grafik posisi partikel sebagai fungsi waktu berupa sinus dapat dinyatakan dalam bentuk sinus atau kosinus. Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Contoh lain sistem yang melakukan getaran harmonik, antara lain, dawai pada alat musik, gelombang radio, arus listrik AC, dan denyut jantung. Galileo di duga telah mempergunakan denyut jantungnya untuk pengukuran waktu dalam pengamatan gerak. Gerak benda pada lantai licin dan terikat pada pegas untuk posisi normal a, teregang b, dan tertekan c Untuk memahami getaran harmonik, kita dapat mengamati gerakan sebuah benda yang diletakkan pada lantai licin dan diikatkan pada sebuah pegas . Anggap mula-mula benda berada pada posisi X = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Ketika benda ditekan ke kiri X = – pegas akan mendorong benda ke kanan, menuju posisi keseimbangan. Sebaliknya jika benda ditarik ke kanan, pegas akan menarik benda kembali ke arah posisi keseimbangan X = +. Gaya yang dilakukan pegas untuk mengembalikan benda pada posisi keseimbangan disebut gaya pemulih. Besarnya gaya pemulih menurut Robert Hooke dirumuskan sebagai berikut. Fp = -kX Tanda minus menunjukkan bahwa gaya pemulih selalu pada arah yang berlawanan dengan simpangannya. Jika kita gabungkan persamaan di atas dengan hukum II Newton, maka diperoleh persamaan berikut. Fp = -kX = ma atau Terlihat bahwa percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum getaran harmonik. Syarat Getaran Harmonik Syarat suatu gerak dikatakan getaran harmonik, antara lain Gerakannya periodik bolak-balik. Gerakannya selalu melewati posisi keseimbangan. Percepatan atau gaya yang bekerja pada benda sebanding dengan posisi/simpangan benda. Arah percepatan atau gaya yang bekerja pada benda selalu mengarah ke posisi keseimbangan. Periode dan Frekuensi Getaran Harmonik a. Periode dan Frekuensi Sistem Pegas kita telah mempelajari gerak melingkar beraturan di kelas X. Pada dasarnya, gerak harmonik merupakan gerak melingkar beraturan pada salah satu sumbu utama. Oleh karena itu, periode dan frekuensi pada pegas dapat dihitung dengan menyamakan antara gaya pemulih F = -kX dan gaya sentripetal F = -4π 2 mf2X. -4π 2 mf2X = -kX 4π 2 mf2 = k Periode dan frekuensi sistem beban pegas hanya bergantung pada massa dan konstanta gaya pegas. b. Periode dan Frekuensi Bandul Sederhana Sebuah bandul sederhana terdiri atas sebuah beban bermassa m yang digantung di ujung tali ringan massanya dapat diabaikan yang panjangnya l. Jika beban ditarik ke satu sisi dan dilepaskan, maka beban berayun melalui titik keseimbangan menuju ke sisi yang lain. Jika amplitudo ayunan kecil, maka bandul melakukan getaran harmonik. Periode dan frekuensi getaran pada bandul sederhana sama seperti pada pegas. Artinya, periode dan frekuensinya dapat dihitung dengan menyamakan gaya pemulih dan gaya sentripetal. Gaya yang bekerja pada bandul sederhana Persamaan gaya pemulih pada bandul sederhana adalah F = -mg sinθ . Untuk sudut θ kecil θ dalam satuan radian, maka sin θ = θ . Oleh karena itu persamaannya dapat ditulis F = -mg . Karena persamaan gaya sentripetal adalah F = -4π 2 mf2X, maka kita peroleh persamaan sebagai berikut. -4π 2 mf2X = -mg 4π 2 f2 = Periode dan frekuensi bandul sederhana tidak bergantung pada massa dan simpangan bandul, tetapi hanya bergantung pada panjang tali dan percepatan gravitasi setempat. Persamaan Getaran Harmonik Persamaan getaran harmonik diperoleh dengan memproyeksikan gerak melingkar terhadap sumbu untuk titik yang bergerak beraturan. a. Simpangan Getaran Harmonik Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Gambar diabawah melukiskan sebuah partikel yang bergerak melingkar beraturan dengan kecepatan sudut dan jari-jari A. Anggap mula-mula partikel berada di titik P. Proyeksi gerak melingkar beraturan terhadap sumbu Y merupakan getaran harmonik sederhana. Perhatikan gambar diatas. Setelah selang waktu t partikel berada di titik Q dan sudut yang ditempuh adalah θ = t = . Proyeksi titik Q terhadap diameter lingkaran sumbu Y adalah titik Qy. Jika garis OQy kita sebut y yang merupakan simpangan gerak harmonik sederhana, maka kita peroleh persamaan sebagai berikut. Y = A sin θ = A sin t = A sin Besar sudut dalam fungsi sinus θ disebut sudut fase. Jika partikel mula-mula berada pada posisi sudut θ0, maka persamaanya dapat dituliskan sebagai berikut. Y = A sin θ = A sin t + θ0 = A sin +θ0 Sudut fase getaran harmoniknya adalah sebagai berikut. Karena Φ disebut fase, maka fase getaran harmonik adalah sebagai berikut. Apabila sebuah benda bergetar harmonik mulai dari t = t1 hingga t = t2, maka beda fase benda tersebut adalah sebagai berikut. Beda fase dalam getaran harmonik dinyatakan dengan nilai mulai dari nol sampai dengan satu. Bilangan bulat dalam beda fase dapat dihilangkan, misalnya beda fase 2¼ ditulis sebagai beda fase ¼. b. Kecepatan Getaran Harmonik Kecepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan simpangan. Mengingat nilai maksimum dari fungsi cosinus adalah satu, maka kecepatan maksimum vmaks gerak harmonik sederhana adalah sebagai berikut. vmaks = A c. Percepatan Getaran Harmonik Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. ay = A [- sin wt + θ 0] ay = - 2A sin t + θ 0 ay = - 2y Karena nilai maksimum dari simpangan adalah sama dengan amplitudonya y = A, maka percepatan maksimumnya amaks gerak harmonik sederhana adalah sebagai berikut. amaks = – 2 A Energi Getaran Harmonik Benda yang bergerak harmonik memiliki energi potensial dan energi kinetik. Jumlah kedua energi ini disebut energi mekanik. a. Energi Kinetik Gerak Harmonik Cobalah kita tinjau lebih lanjut energi kinetik dan kecepatan gerak harmoniknya. Karena Ek =½ mvy2 dan vy = A cos t, maka Energi kinetik juga dapat ditulis dalam bentuk lain seperti berikut. Ek maks = m 2 A2, dicapai jika cos2 t = 1. Artinya, t harus bernilai , , …, dan seterusnya. y = A cos t y = A cos y = A di titik setimbang Ek min = 0, dicapai bila cos2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A cos t y = A cos 0 y = A di titik balik Jadi, energi kinetik maksimum pada gerak harmonik dicapai ketika berada di titik setimbang. Sedangkan energi kinetik minimum dicapai ketika berada di titik balik. b. Energi Potensial Gerak Harmonik Besar gaya yang bekerja pada getaran harmonik selalu berubah yaitu berbanding lurus dengan simpangannya F = ky. Secara matematis energi potensial yang dimiliki gerak harmonik dirumuskan sebagai berikut. Ep = ky2 Ep = m 2 A sin t2 Ep = m 2 A2 sin2 t Ep maks = m 2 A2 dicapai jika sin2 t = 1. Artinya t harus bernilai , 3, … , dan seterusnya y = A sin y = A di titik balik Ep min = 0, dicapai jika sin2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A sin t y = A sin 0 y = 0 di titik setimbang c. Energi Mekanik Gerak Harmonik Energi mekanik sebuah benda yang bergerak harmonik adalah jumlah energi kinetik dan energi potensialnya. Berdasarkan persamaan diatas, ternyata energi mekanik suatu benda yang bergetar harmonik tidak tergantung waktu dan tempat. Jadi, energi mekanik sebuah benda yang bergetar harmonik dimanapun besarnya sama. Em = Ek maks = Ep maks Em = m 2 A2 = k A2 Kedudukan gerak harmonik sederhana pada saat Ep dan Ek bernilai maksimum dan minimum. d. Kecepatan Benda yang Bergetar Harmonik Untuk menghitung kecepatan maksimum benda atau pegas yang bergetar harmonik dapat dilakukan dengan menyamakan persamaan kinetik dan energi total mekaniknya dimana Ek = Em. Sedangkan untuk menghitung kecepatan benda di titik sembarang dilakukan dengan menggunakan persamaan kekekalan energi mekanik
Gerakharmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan.[1]. Contoh gerak harmonik sederhana. Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu:[1] Gerak Harmonik Sederhana [GHS] Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U Pengertian Getaran Harmonis Sumber Gerak harmonik merupakan gerak sebuah benda dimana grafik posisi partikel sebagai fungsi waktu berupa sinus dapat dinyatakan dalam bentuk sinus atau kosinus. Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Contoh lain sistem yang melakukan getaran harmonik, antara lain, dawai pada alat musik, gelombang radio, arus listrik AC, dan denyut jantung. Galileo diduga telah mempergunakan denyut jantungnya untuk pengukuran waktu dalam pengamatan gerak. Sumber Gerak benda pada lantai licin dan terikat pada pegas untuk posisi normal a, teregang b, dan tertekan c. Memahami Getaran Harmonis Sobat Pintar, untuk memahami getaran harmonik, kita dapat mengamati gerakan sebuah benda yang diletakkan pada lantai licin dan diikatkan pada sebuah pegas . Anggap mula-mula benda berada pada posisi X = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Ketika benda ditekan ke kiri X = – pegas akan mendorong benda ke kanan, menuju posisi keseimbangan. Sebaliknya jika benda ditarik ke kanan, pegas akan menarik benda kembali ke arah posisi keseimbangan X = +. Gaya yang dilakukan pegas untuk mengembalikan benda pada posisi keseimbangan disebut gaya pemulih. Besarnya gaya pemulih menurut Robert Hooke dirumuskan sebagai berikut Fp = - kX Tanda minus menunjukkan bahwa gaya pemulih selalu pada arah yang berlawanan dengan simpangannya. Jika kita gabungkan persamaan di atas dengan hukum II Newton, maka diperoleh persamaan berikut Terlihat bahwa percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum getaran harmonik. Syarat suatu gerak dikatakan getaran harmonik, antara lain 1. Gerakannya periodik bolak-balik. 2. Gerakannya selalu melewati posisi keseimbangan. 3. Percepatan atau gaya yang bekerja pada benda sebanding dengan posisi/simpangan benda. 4. Arah percepatan atau gaya yang bekerja pada benda selalu mengarah ke posisi keseimbangan. Periode dan Frekuensi Getaran Harmonis Periode dan Frekuensi Sistem Pegas Kita telah mempelajari gerak melingkar beraturan di kelas X. Pada dasarnya, gerak harmonik merupakan gerak melingkar beraturan pada salah satu sumbu utama. Oleh karena itu, periode dan frekuensi pada pegas dapat dihitung dengan menyamakan antara gaya pemulih F = - kX dan gaya sentripetal F=-4 phi2mf2X. Periode dan frekuensi sistem beban pegas hanya bergantung pada massa dan konstanta gaya pegas. Periode dan Frekuensi Bandul Sederhana Sebuah bandul sederhana terdiri atas sebuah beban bermassa m yang digantung di ujung tali ringan massanya dapat diabaikan yang panjangnya l. Jika beban ditarik ke satu sisi dan dilepaskan, maka beban berayun melalui titik keseimbangan menuju ke sisi yang lain. Jika amplitudo ayunan kecil, maka bandul melakukan getaran harmonik. Periode dan frekuensi getaran pada bandul sederhana sama seperti pada pegas. Artinya, periode dan frekuensinya dapat dihitung dengan menyamakan gaya pemulih dan gaya sentripetal. Sumber Periode dan frekuensi bandul sederhana tidak bergantung pada massa dan simpangan bandul, tetapi hanya bergantung pada panjang tali dan percepatan gravitasi setempat. Persamaan Getaran Harmonis Persamaan getaran harmonik diperoleh dengan memproyeksikan gerak melingkar terhadap sumbu untuk titik yang bergerak beraturan. Simpangan Getaran Harmonik Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Gambar dibawah melukiskan sebuah partikel yang bergerak melingkar beraturan dengan kecepatan sudut dan jari-jari A. Anggap mula-mula partikel berada di titik P. Proyeksi gerak melingkar beraturan terhadap sumbu Y merupakan getaran harmonik sederhana. Perhatikan gambar diatas. Setelah selang waktu t partikel berada di titik Q dan sudut yang ditempuh adalah Proyeksi titik Q terhadap diameter lingkaran sumbu Y adalah titik Qy. Jika garis OQy kita sebut y yang merupakan simpangan gerak harmonik sederhana, maka kita peroleh persamaan sebagai berikut Besar sudut dalam fungsi sinus disebut sudut fase. Jika partikel mula-mula berada pada posisi sudut, maka persamaannya dapat dituliskan sebagai berikut Sudut fase getaran harmoniknya adalah sebagai berikut Maka fase getaran harmonik adalah sebagai berikut Apabila sebuah benda bergetar harmonik mulai dari t = t1 hingga t = t2, maka beda fase benda tersebut adalah sebagai berikut Beda fase dalam getaran harmonik dinyatakan dengan nilai mulai dari nol sampai dengan satu. Bilangan bulat dalam beda fase dapat dihilangkan, misalnya beda fase 2 seperempat ditulis sebagai beda fase seperempat. Kecepatan Getaran Harmonik Kecepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan simpangan. Mengingat nilai maksimum dari fungsi cosinus adalah satu, maka kecepatan maksimum vmaks gerak harmonik sederhana adalah sebagai berikut Percepatan Getaran Harmonik Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. Karena nilai maksimum dari simpangan adalah sama dengan amplitudonya y = A, maka percepatan maksimumnya amaks gerak harmonik sederhana adalah sebagai berikut Energi Getaran Harmonis Energi Kinetik Gerak Harmonik Cobalah kita tinjau lebih lanjut energi kinetik dan kecepatan gerak harmoniknya. Jadi, energi kinetik maksimum pada gerak harmonik dicapai ketika berada di titik setimbang. Sedangkan energi kinetik minimum dicapai ketika berada di titik balik. Energi Potensial Gerak Harmonik Besar gaya yang bekerja pada getaran harmonik selalu berubah yaitu berbanding lurus dengan simpangannya F = ky. Secara matematis energi potensial yang dimiliki gerak harmonik dirumuskan sebagai berikut 1. Jawablah pertanyaan berikut ini! Sebuah pegas memiliki tetapan 5 N/m. Berapakah massa beban yang harus digantungkan agar pegas bertambah panjang 98 mm? A. 50 gram B. 100 gram C. 150 gram D. 200 gram E. 250 gram JAWABAN BENAR PEMBAHASAN 2. Jawablah pertanyaan berikut ini! Sebuah pegas memiliki tetapan 5 N/m. Berapakah periodenya jika beban tersebut digetarkan? A. B. C. D. E. JAWABAN BENAR D. PEMBAHASAN 3. Jawablah pertanyaan berikut ini! Simpangan x dari sebuah getaran partikel diberikan oleh persamaan di mana x dalam cm dan t dalam sekon. Tentukan frekuensi pada persamaan tersebut! A. 1,0 Hz B. 1,5 Hz C. 2,0 Hz D. 2,5 Hz E. 2,8 Hz JAWABAN BENAR PEMBAHASAN Secara umum Maka 4. Jawablah pertanyaan berikut ini! Tentukan posisi partikel saat t 2 s pada persamaan di mana x dalam cm dan t dalam sekon A. 0,62 cm B. 0,84 cm C. 1,20 cm D. 1,28 cm E. 2,40 cm JAWABAN BENAR PEMBAHASAN Pada saat t = 2 s maka posisi partikel 5. Jawablah pertanyaan berikut ini! Sebuah benda bermassa 2 kg dihubungkan ke sebuah pegas berkonstanta gaya 40 N/m. Benda tersebut bergerak dengan kelajuan 20 cm/s. Berapakah energi total benda, ketika berada pada posisi kesetimbangan? A. 2 x 10-2 J B. 4 x 10-2 J C. 6 x 10-2 J D. 8 x 10-2 J E. 12 x 10-2 J JAWABAN BENAR PEMBAHASAN Di titik setimbang x = 0 maka energi total benda sama dengan energi kinetiknya Dalamgetaran harmonik, percepatan getaran .(A) selalu sebanding dengan simpangannya (B) tidak bergantung simpangan (C) berbanding terbalik dengan kuadrat frekuensinya (D) berbanding lurus dengan pangkat tiga amplitudonya (E) berbanding lurus dengan sudut fasenyaGetaran Harmonis – Hay sahabat semua.!Pada perjumpaan kali ini kembali akan kami sampaikan mengenai Getaran Harmonis Pengertian, Rumus, Makalah, Modul Dan Contoh Soal. Namun pada perjumpaan sebelumnya kami juga telah menyampaikan materi tentang Hukum Hess. Nah untuk melengkapi apa yang menjadi tema pembahasan kita kali ini, maka simak ulasan selengkapnya di bawah ini. Definisi Getaran HarmonisSyarat-syarat Getaran HarmonisPeriode dan Frekuensi Getaran Harmonis1. Periode dan Frekuensi Sistem Pegas2. Periode dan Frekuensi Bandul SederhanaContoh Soal dan Pembahasan Getaran Harmonis Definisi Getaran Harmonis Getaran Harmonis Apa yang dimaksud dengan Getaran Harmonis ? yakni merupakan sebuah gerak pada sebuah benda di mana grafik letak partikel merupakan sebagai fungsi waktu yang berbentuk sinus yang bisa dinyatakan dalam bentuk sinus maupun kosinus. Kemudian pada gerak seperti ini dikenal juga dengan sebutan gerak osilasi atau getaran harmonis. Nah untuk gambaran atau contoh dari sistem yang menggunakan prinsip getaran harmoni sendiri misalnya seperti, dawai pada alat musik, gelombang radio, arus listrik AC dan denyut jantung. Kemudian Galileo juga telah diduga menggunakan denyut jantungnya untuk dijadikan sebagai pengukuran waktu dalam melakukan sebuah pengamatan gerak. Syarat-syarat Getaran Harmonis Di bawah ini terdapat beberapa syarat-syarat sebuah gerakan bisa dianggap sebagai getaran harmonis, yang diantaranya ialah sebagai berikut Sistem Gerakannya secara periodik atau Gerakannya akan selalu melewati kedudukan pada Percepatan atau gaya yang bekerja yang terdapat pada sebuah benda akan dapat sebanding dengan kedudukan atau simpangan Arah dalam percepatan atau gaya yang bekerja yang ada didalam suatu benda selalu mengarah kedudukan keseimbangan. Periode dan Frekuensi Getaran Harmonis 1. Periode dan Frekuensi Sistem Pegas Pada inti pokoknya, dimana gerak harmonis ialah merupakan sebuah gerak yang berlangsung secara melingkar yang beraturan yang berlangsung pada salah satu sumbu utama. Maka oleh sebab itu, periode dan frekuensi yang ada pada pegas bisa dihitung dengan cara menyertakan antara gaya pemulih F = – kX dengan gaya sentripetal F = -4π 2 mf2X. Jadi akan diperoleh, -4π² mf²X = -kX —> 4π² mf² = k Periode dan frekuensi yang berlangsung pada suatu sistem beban pegas yang mana hal ini hanya bergantung dengan massa dan juga konstanta gaya pegas. 2. Periode dan Frekuensi Bandul Sederhana Pada Suatu bandul yang sederhana tersusun atas sebuah beban yang mempunyai massa “m” yang kemudian diletakan dengan cara digantung pada bagian ujung tali yang ringan maka massanya dapat diabaikan dengan panjang l. Kemudian apabila pada beban tersebut ditarik ke salah satu sisi kemudian dilepaskan, maka beban tersebut akan berayun dengan melalui titik yang memberikannya keseimbangan dan akan menuju ke arah sisi yang lainnya. Kemudian jika amplitudo pada ayunan tersebut kecil, maka pada bandul tersebut akan melakukan sebuah getaran harmonis. Nah dalam hal ini diketahui bahwa suatu Periode beserta frekuensi pada suatu getaran bandul yang sederhana layaknya seperti yang terjadi pada pegas. Jadi intinya, periode dan frekuensinya juga bisa dihitung dengan cara menyetarakan gaya pemulih dan juga gaya sentripetal. Nah Persamaan dari gaya pemulih dalam bandul sederhana ialah F = -mg sinθ. untuk sudut θ kecil θ dalam satuan radian, jadi sin θ = θ. maka oleh sebab itu, persamaannya dapat ditulis menjadi F = -mg X/l. Sevbab persamaan pada gaya sentripetal ialah F = -4π 2 mf²X, Jika akan kita peroleh persamaan sebagai berikut. -4π² mf²X = -mg X/l4π² f² = g/lf = ½π √km atau T = 2π √mk Dalam hal ini yang mana Periode kemudian dengan frekuensi pada suatu bandul yang sangat sederhana tak pernah ketergantungan pada massa dan juga pada simpangan bandul, Melainkan sangat bergantung terhadap ukuran dari tali yang memanjang dan juga kecetan adanya sebuah gravitasi yang disekitar. Contoh Soal dan Pembahasan Getaran Harmonis Soal Pada Sebuah benda mengalangi suatu getaran hingga sampai menyebabkan suatu getaran harmonis dengan persamaan y = 0,04 sin 20π t, yang mana y menjadi sebagai simpangan dalam satuan meter dan kemudia t, akan menjadi sebagai waktu dalam satuan sekon. Maka hitunglah berapa julah besaran dari persamaan yang terjadi pada getaran harmonis berikut ini amplitudofrekuensiperiodesimpangan maksimumsimpangan ketika t = 1/60 sekonsimpangan ketika sudut fasenya 45°sudut fase ketika simpangannya 0,02 meter Pembahasan Berdasarkan pola dari persamaan pada simpangan gerak harmonis yang ada di atas ialah y=A sin t=2π f atau = 2π/T a A /amplitudo y=0,04 sin20π t↓A =0,04 meter b f atau frekuensi y = 0,04 sin 20π t↓ = 20π2πf = 20πf = 10 Hz c T atau periode T = 1/fT = 1/10 = 0,1 s d y. maks atau simpangan maksimum y =A sin ty =y. maks sin ty =0,04 sin 20π t↓y =y. maks sin t Merupakan simpangan maks seperti halnya amplitudo e simpangan pada saat t=1/60sekon y=0,04 sin20π ty=0,04 sin20π 1/60y=0,04 sin1/3 πy=0,04 sin60° y=0,04 ×1/2√3 y=0,02√3 m f simpangan ketika sudut fasenya 45° y =A sin ty =A sin θ di mana θ adalah sudutfase, θ = t y =0,04sin θy =0,04sin 45° y =0,040,5√2 y =0,02√2 m g sudut fase ketika simpangannya 0,02 meter y = sin 20π ty= sin θ0,02=0,04 sin θsin θ=1/2θ =30° Nah itulah yang bisa kami sampaikan mengenai getaran harmonis, semoga ulasan ini dapat bermanfaat bagi sahabat semua.